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Nitrogen availability was measured in two improved fallows (Tephrosia candida, Crotolaria paulina), 
natural fallows, and continuously cropped fertilized and unfertilized maize (Zea mays) in Nyabeda, Siaya 
District, Western Kenya. Nitrogen availability was high following incorporation of their residues. N 
availability in all the treatments declined over time during the cropping season indicating that the soil N 
capital is not adequate. Tillage did not significantly (P>0.05) affect N availability and gaseous emissions.  No 
tillage, however, reduced total N2O and CO2 emissions by 152 g N2O-N ha-1 and 317 kg CO2-C ha –1 
respectively indicating its potential in reducing greenhouse effect. The findings of this study will be important 
in developing practices that increase N-use efficiency and reduce greenhouse gas emissions. 
 
Key words: Tephrosia candida, Crotolaria paulina, tillage greenhouse gas emission and nitrogen 
mineralization. 
 
Introduction 
 

Because of the high incidences of soil fertility depletion in Western Kenya, improved 
fallow farming systems are being promoted for soil fertility improvements using nitrogen 
fixing trees/shrubs that are also capable of recycling of other nutrients through litter fall or 
pruning (Baggs et al., 2001).  Despite these efforts, there are increasing concerns regarding 
low crop N recovery from added pruning (Giller and Cadisch, 1995) because of lack of 
synchrony between N release and crop demand, and the potential for substantial N losses 
(Baggs et al., 2001). Loss vectors in the field include nitrate leaching, erosion and gaseous 
emission (Mosier, 1998).  The gaseous losses, as emphasized by recent research, are of 
particular concern due to their detrimental effect on the atmospheric environment.  To date 
however, there are few reports of trace gas emissions from the tree-based tropical 
agricultural systems (Palm et al., 2002, Millar et al., 2003a). The effect of the various 
species pruning to the emissions of greenhouse gas is therefore necessary. Although Nair 
and Nair (2002), state that improved fallows have the potential for carbon sequestration, 
however, considerable effort is still required to assess the magnitude of this potential.  

Many factors are involved in the regulation of nitrification and denitrification including 
climatic conditions, soil characteristics, and cropping practices and their interactions (Mills 
and Jones, 1996). Denitrification and nitrification processes are also linked to 
mineralization of SOM. Significant amount of soil organic N is mineralised during the 
growing season. Most crops require substantial quantity of N early in the growing season 
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(Keeney, 1982).  Traditionally nitrate has been the primary N form absorbed by plants due 
to rapid conversion of ammonium in the soil to the nitrate. Higher plants and 
microorganisms compete for N in soils. Since the microorganisms are more efficient in 
intercepting N, the availability of N for plant growth depends on the soil C: N ratio.  When 
C: N>30:1, N is immobilized in the decomposition process of organic residue by soil 
microbes, while at 20:1<C: N<30:1, there is limited immobilization and release of N into 
soil environment occurs. Nitrogen is available for plant uptake at C: N<20:1 form (Mills 
and Jones, 1996).  
 In the study, N availability were measured prior to and following cutting of improved 
fallow species. Comparisons were made with natural fallow and continuous maize 
(fertilized and unfertilised) cropping systems. Knowledge of the contribution of these 
systems to atmospheric loading of greenhouse gasses will contribute to the development of 
appropriate organic matter management practices to mitigate emissions and to increase 
nutrient use efficiency in these systems. The beneficiaries will be the farmers whose crop 
yields would be improved with increased nutrient use efficiency. The mitigation of gaseous 
losses would also reduce global warming. The objective of this study was to determine N 
availability during the cropping season under different fallows and continuous farming 
systems as affected by chemical composition of the fallow residues and method of tillage. 
 
Materials and methods 
 
Study site  
 

The field study was conducted in Western Kenya highlands at an existing 
KEFRI/ICRAF smallholder experimental farm at Nyabeda in Yala Division, Siaya District 
in Nyanza Province.  The area lies on coordinates 0o07’N, 34o24’E at 1330 metres above 
see level (Soil Survey Staff, 1999). The area experiences bimodal rainfall pattern with two 
growing seasons. The first (long) rains season starts in March to July and the second (short) 
rain season starts from August to November. Annual rainfall ranges between 1500 to 1900-
mm with an annual mean temperature of 24 oC (Rommelse, 2000). Despite the total high 
rainfall, dry spells occur during the growing seasons, negatively affecting crop production. 
The predominant soils in the area are P-sorbing alfisols and oxisol originally quite fertile 
but now quite depleted of N and P.  Declining soil fertility has therefore been found as main 
factor limiting crop production (Hoekstra, 1988). The soils are silty clay loam, slightly 
acidic (pH 5.4) with low total cabon and N contents, and frequent P deficiencies 
(Nyambati, 2000).  
 The area is densly populated (500-1200 people Km-2) with smallholder farms (0.2 – 2.5 
Ha per household).  Maize is preferred staple food and is often intercropped with beans, 
with low yields ranging between 700 -2000 Kg ha-1 for maize and 100 - 500 Kg ha-1 for 
beans. Other common food crops are bananas, cassava, sweet potatoes, sorghum, 
groundnuts, cowpeas and kales. In spite of the extreme land pressure, about 52 % of the 
farmers leave their farms under natural fallow (Swinkels et al., 1997), while others are 
increasingly adopting improved fallow farming systems (Sanchez et al., 1997). 
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Experimental treatments 

 
Tillage and no-tillage practices were tested on Tephrosia candida fallow because of its 

ability to suppress weeds. The experiment was a randomized complete block design with 
three replicates comparing two treatments: Tephrosia candida (conventional till) and 
Tephrosia candida (no till).  Each main plot measured 9 x 18m, and were subdivided into 
two equal sub-plots measuring (4.5 x 9m), where one of the sub-plots was either tilled or 
not tilled. The main plots were separated by 1m strips. Tephrosia candida had previously 
been seeded directly through intercropping into a growing maize crop. Fallows were 
harvested, and together with litter fall collected during fallow growth together, were 
incorporated by conventional till to 15cm depth or by no-tillage where residues remained 
on the surface three days later. Uniform broadcasts of inorganic P (Triple Superphsophate, 
100 kg P ha-1) and K (Muriate of Potash fertilizer, 100 kg K ha-1) were also done over all 
the plots thereafter on 15-16 March 2002.  Maize was planted at 53,333 plants per hectare 
over a period of three days from 16 – 18 March 2002. Emissions of N2O, CO2 and CH4 
were measured prior to and periodically following fallow biomass additions. This was done 
concurrently with estimates of available soil N.  Measurements were made between 
February - June 2002.  
 Sampling was carried out before, and after harvesting mulch from the fallow tree 
species, land preparation and incorporation of mulch biomass into the soil.  Gas sampling 
was then carried out 3, 6, 10, 13, 17, 24, 38, 60 and 88 days after mulch incorporation into 
the soil between February and June 2002.  Nitrous, methane and carbon dioxide gases 
emitted from the soil were sampled using gas tight syringes into evacuated 12 ml gas vials 
from closed flux chambers (0.2 m height by 0.3m diameter) installed into the soil as 
described by Smith et al. (1995).  Two chambers per plot (treatment) were inserted to a soil 
depth of 50 mm, 12 days prior to biomass incorporation. Care was taken during insertion to 
minimize disruption to the soil especially to soil inside the chambers.  The chambers were 
reinstalled after biomass incorporation after which, they remained in situ until the end of 
the experiment. The chambers were closed for one hour before sampling.  
 In order to minimise effects of diurnal variation in gas emissions, all gas sampling was 
done between 10 am – 12.00 noon on each occasion (Baggs et al., 2000). The vials 
containing sampled gas were kept under refrigeration up to the time they were sent to Wye 
College in the United Kingdom for analysis using gas chromatography method. The gas 
samples were analysed for N2O, CO2 and CH4 in an Agilent 6890 gas chromatograph fitted 
with an electron capture detector, flame ionisation detector and a methaniser. Column and 
detector temperatures were 50 and 250 oC, respectively. Gas chromatography using 
electron capture detector was used for N2O analysis. The method is highly sensitive for 
N2O analysis. Flame ionisation detector is highly sensitive and selective for organic gases 
and was used for the determination of CO2 and CH4. 
 
Soil sampling and analysis 
 

Bulk soil samples from six auger holes were taken at depth of 0 – 15cm at the same 
time of gas sampling for the purpose of determinating gravimetric soil water contents.  A 
sub sample of thoroughly was immediately put into a prewieghed and labeled moisture tins. 
This was used for determination of soil water content. A second sub sample of about 20 g 
was then collected from the remaining soil in the bucket and placed in a plastic bag, labeled 
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and sealed with sisal twine. The soil in the bags were analysed for mineral N and were 
stored in the refrigerator between collection and extraction (Dorich and Nelson, 1984). 

During fallow growth, litter traps were installed in each fallow plot.  These were used to 
quantify litter fall from each fallow treatment. Litter falls from the improved- and natural-
fallow treatments were collected every two weeks for determination of chemical 
composition (or quality) and quantities of biomass incorporated.  The fallow species were 
harvested at the onset of the long rains in March 2002. Harvesting was done between 1st 
and 4th March 2002. At fallow harvest the aboveground biomass was separated into woody 
biomass (main trunk and branches), foliage (leaves, small twigs) and pods. The woody 
material were removed from the plots and fresh weight of other plant components was 
determined and a sub sample taken to the laboratory for dry matter determination. The 
samples were oven dried at 40 oC for 72 hours. Dried sub samples were ground and passed 
through 20-mesh screen for further determination of chemical composition of residues. 
 Soil water content was determined gravimetrically. Fresh soil sample was weighed 
before being dried in an oven at 105 oC for 48 hours after which it was reweighed (Dorich 
and Nelson, 1984).  Assessment of residue quality was done at Wye College in UK.  Sub-
samples of litter fall were analysed for dry-matter yield, total N and total C content using a 
C/N analyser coupled to a Europa 20/20 isotope ratio mass spectrometer. Lignin content 
was measured in an Ankom 220 fiber analyser. Total extractable polyphenol content were 
determined using Folin-Ciocalteu reagent in a method adapted from Anderson and Ingram 
(1993).  All data was subjected to ANOVA using Genstat 5 Release 3.2 statistical program 
(p<0.05). Treatment means were separated using least significant differences test (LSD). 
Correlation of parameters were determined using excel data analysis tool.  
 
Results and discussion 
 
Effect of tillage and non-tillage on greenhouse gas emissions and N release in soil 
 
Daily fluxes  
 

Daily CO2 and CH4 fluxes did not differ significantly (P>0.05) between the treatments 
throughout the sampling period (Figure 1). Carbon dioxide and N2O fluxes were, however, 
generally higher in the tilled treatment while, CH4 fluxes were higher in the non-tilled 
treatment. Nitrous oxide fluxes from no-till treatment were only higher than from tilled 
treatment on day 3 after residue incorporation. Carbon dioxide fluxes from no-tilled 
treatment were higher than those from tilled treatment on day 3, 10 and 24 after residue 
incorporation.  Nitrous oxide and CO2 fluxes peaked on day 10 after residue application in 
both treatments. Daily fluxes of CH4 were negative from non-tilled treatment on day 6, 10, 
60 and 88 after biomass addition while, were only were negative on day 60 and 88 from the 
tilled treatment (Fig. 1). This indicates that there was greater production than consumption 
of CH4 in the non-tilled treatment. 
 
Total emissions 
 

There was no significant difference (P>0.05) between treatments in the amount of total 
N2O, CO2 and CH4 over 14,28, 48, 60 and 88 days after incorporation of residues 
(Appendix 10a, 10b and 10c). Total N2O, CO2 and CH4 emitted over the sampling period 
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(99 days) were still not significantly different (P > 0.05) among the treatments. Higher total 
N2O emissions were measured from non-tilled than tilled Tephrosia treatment over the first 
14 days after residue incorporation; however, cumulative N2O emissions over 99 days were 
lower from non-till treatment (432 N2O-N Kg ha-1) than from tilled treatment (584 N2O-N 
Kg ha-1) (Appendix 10a).  Higher cumulative CO2 and CH4 emissions were measured from 
tilled than from non-tilled Tephrosia treatment throughout the sampling period.  
Cumulative CH4 emissions reduced between 48th up to 88th day indicationg greater 
consumption than production of CH4 in these treatments (Fig. 2).  
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Fig. 1: Daily greenhouse gaseous emissions  
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Fig. 2: Cumulative greenhouse gas emissions  

 
 
Effect of tillage and non-tillage on N release after biomass incorporation 
 
 There was no significant difference (P>0.05) in the amounts of available total N, NO3

- 
and NH4

+ measured from tilled and untilled Tephrosia treatments throughout the sampling 
period (Figure 3).   Total N measured was generally higher in the non-tilled treatment in the 
first 13 days after residue incorporation. Thereafter high total N was measured from tilled 
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treatment. The dominant forms of N measured from non-tilled and tilled treatments were 

NH4
+ and NO3

-, 
respectively (Fig. 3).  
 
. 

 

Fig. 3: Effects of tillage on nitrogen mineralization 
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Total N measured in soils did not differ significantly (P>0.05) between the treatments 
throughout the days of observation except on 17th day after residue incorporation 
(Appendix 11a). On 17th day total N from tilled Tephrosia was the highest over the 
sampling period and it was significantly higher (P<0.05) than from Tephrosia no-till 
treatment (Appendix 11a). There was no significant difference (P>0.05) in the amounts of 
NO3

- in the tilled and non-tilled treatments throughout the experimental period (Appendix 
11b).  Tilled treatment had significantly higher (P<0.05) NH4

+ amounts only on day 3 and 6 
after residue incorporation (Appendix 11c). Generally higher total N, NO3

- and NH4
+ were 

measured from tilled than non-tilled treatment (Fig. 10). Nitrogen release at 5-15cm depth 
was also generally higher than from 0-5cm in both treatments 
 
Effect of tillage on gaseous emissions 
 

Aulakh et al. (1991), found that surface-placed residues resulted in lower initial rates of 
denitrification. This is in contrast with the results of this study where N2O fluxes from no-
till treatment were higher than from tilled treatment on day 3 after residue incorporation. 
Denitrification potential and rates in soils are controlled by amount of NO3

- and C 
susceptible to mineralization (Aulakh et al., 1991). Tillage accelerates decomposition of 
SOM with consequent increases in both available SOC and nitrate, which enhances 
denitrification. Tillage also temporary lowers soil moisture content, which affects 
decomposition rates and anaerobic state of soil (Li et al., 1994). Available NO3

- was higher 
and dominant N form in the tilled treatment thus enhancing denitrification potential and 
hence increased N2O emissions.  Higher available NO3

- resulted from increased rate of 
nitrification. Nitrification is the biological oxidation of ammonia to nitrate. The process 
requires molecular oxygen and hence would readily take place in well –aerated soils in the 
tilled treatment (Tisdale and Nelson, 1975). 
 In well-drained neutral to slightly acid soils the rate of oxidation of NO2

- to NO3
- is 

higher than NH4
+ to NO2-. If the rate of NO2

- formation is equal to or greater than that of 
NH4

+, nitrate is the form that therefore accumulates (Tisdale and Nelson, 1975). The results 
of the study agree with this since NO3

- was the dominant form of N in the tilled treatment.  
Higher initial CO2 fluxes from non-tilled treatment could have occurred due to activity of 
soil microbes, which probably were disturbed on the tilled treatment.  A significant 
proportion of soil microbial biomass may be directly killed by soil disturbances. Microbial 
activity was, however, short lived.  Aulakh et al. (1991) also found that with surface placed 
residues initial CO2 production was greater than corresponding incorporated residue 
treatments due to the activity of epiphytic fungi, while denitrification rates showed an 
opposite trend.   
 Methane (CH4)fluxes were generally higher from non-tilled than tilled treatment, 
probably due to enhanced anaerobic conditions in the non-tilled treatment.  In the non-tilled 
treatment, CH4 may have been microbially produced through methanogenesis process. The 
major pathways of CH4 production in anaerobic conditions involve: (i) the reduction of 
CO2, with H2, fatty acids, or alcohols being the hydrogen donors; and (ii) the 
transmethylation of acetic acid or methyl alcohols by methane-producing bacteria (Verchot 
et al., 2004). In the tilled treatment where aerobic conditions were enhanced, CH4 may have 
been oxidised by bacteria through methanotrophy process. Methanotrophy is a biochemical 
process, which is dominant in aerobic soils or upland soils. In these soils, oxidation 
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generally exceeds production and there is a net uptake by the soil of CH4 atmosphere 
(Verchot et al., 2004). 
 Initial higher emissions in the non-tilled treatment could have been due to N2O 
produced near the surface diffusing readily out of the soil into the atmosphere, where as 
N2O produced after cultivation, may have taken longer to diffuse from the soil providing 
more opportunity for reduction to N2, before reaching the atmosphere (Arah et al., 1991). 
N2O emissions from the study contrasts emissions of N2O from the temperate systems that 
have been generally reported to be higher from undisturbed, no till, than from cultivated 
soils (Baggs et al., 2002).  
 Higher initial CO2 emissions in the tilled treatment could have been caused by 
immediate creation of anaerobic conditions conducive for denitrification and 
methanogenesis under the residues by increased water content (Aulakh et al., 1991). 
Anaerobic conditions enhance anaerobic decomposition, which leads to the formation of 
methane and carbon dioxide gases (Tan, 1994). Thereafter the aerobic conditions in the 
tilled treatment lead to the oxidation of CH4 to CO2.  Higher CH4 emissions could have 
been produced microbially in the anaerobic conditions under no-tilled treatment.  Microbial 
oxidation of CH4 to CO2 was very likely reduced by anaerobic conditions in the non-tilled 
treatment and hence increased accumulation of CH4.  The margins between CH4 emissions 
from non-tilled and tilled treatment were higher between 28th and 60th day.  This could have 
been caused by higher rainfall (445mm) experienced during this period, which enhanced 
anaerobic conditions in the non-tilled treatment and hence reduced oxidation of CH4 to 
CO2. 
 No-tillage of Tephrosia resulted in an estimated reduction in emissions of 919 g 
N2O-Nha-1yr-1 and 318 Kg CO2-Cha-1yr-1 and increased CH4 emissions of 144 g CH4-Cha-

1yr-1. Chikowo et al. (2003) also measured lower N2O emission from non-tilled than from 
tilled Sesbania residues over four weeks in an improved fallow system in Zimbabwe.  
Although tillage increased emissions of N2O and CO2 there was no significant difference 
between tillage and no-tillage practices.  This may have been due to the fact that the no-till 
treatment had not been established long enough to cause significant accumulation of 
organic matter on the soil surface (Six et al., 2002). Similarly Millar, (2002) found no 
significant effect of tillage following application of Macroptilium atropurpureum residues 
to an oxisol in Western Kenya. Aulakh et al. (1991) also found that cumulative CO2 and 
N2O losses were not significantly different with respect to crop residue placement. 
 
Effects of tillage effect on N release 
 

Tilled treatment had generally higher NO3
- -N pools at 0-5 cm soil depth compared with 

non-tilled treatment. This indicates that net nitrification rates were higher in the tilled 
treatment, which resulted in higher cumulative N2O emissions. The results of the study are 
in agreement with findings of Neill et al.  (1995), that depth affects the net nitrification 
rates and these rates are higher at 0-5 cm depth. On the other hand, the soil NH4

+ remained 
relatively high at soil depth 0–5 cm for non-tilled treatment, which indicates that 
nitrification potential was low and hence reduced denitrification potential. In 5-15 cm depth 
there was no dominant form of mineral N in the tilled treatment, which indicates that net 
mineralization and nitrification were more or less equal. In the no-till treatment NH4

+ form 
dominated. This resulted from reduced soil aeration, which reduced nitrification potential. 
Nitrification normally takes place under oxygenated conditions. 
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 In the study, tillage did not affect significantly nitrogen availability both at 0- 5 and 5- 
15 cm depth; however, N levels were generally higher at 5 –15 cm soil depth. At 15 cm 
higher N availability was most likely due to reduced denitrifier activity. Soil organic 
matter, especially easily decomposable fraction, is an important source of soluble carbon 
and nitrate for denitrification (Li et al., 1994).  As fertilizers are applied deeper into the 
soil, they become less available to denitrifying bacteria, which are active near the surface 
where carbon substrate is more abundant and saturated conditions are more frequent.  
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