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Burgers’ equation appears as a model in turbulence and gas dynamics. We develop hybrid finite 
difference methods resulting from operator splitting for solving it. Among the hybrid finite difference 
methods developed are the Crank–Nicholson–Lax–Fredrichs, Crank-Nicholson–Du Fort and Frankel and 
Crank–Nicholson–Lax-Fredrich–Du Fort and Frankel. We determine that Lax–Fredrichs method reduces 
the efficacy of the Crank–Nicholson method whereas the Du Fort and Frankel method increases the 
efficacy of this method (the Crank-Nicholson method). The Du–Fort and Frankel method actually increase 
the number of grid points involved. The increase in number of grid points used is responsible for the 
improved accuracy of the pure Crank–Nicholson and the hybrid Crank–Nicholson-Lax–Friedrichs’ 
schemes. The hybrid Crank-Nicholson-Lax-Friedrichs’ scheme is the most accurate.  
 
Keywords: Burgers’ equation, operator splitting, Crank-Nicholson method. 
 
Introduction 
 
Finite difference methods for solving the heat equation 
 

Consider the heat equation: 
( ) (xuxuuu xxt 0,0 == )α             (1.1.1) 

Studies by Ames (1977), Mitchell and Griffiths (1980), Jain (1984), Chapra and 
Canale (1998), Rahman (1994) and Rao (2005) describe the three methods Schmidt, 
Crank-Nicholson , Lax-Fredrich’s and Du Fort and Frankel methods for finding the 
numerical solution of the equation (1.1.1).These methods are based on finite differences. 
Schmidt, Lax–Fredrichs’ and Du Fort and Frankel methods are explicit whereas the 
Crank–Nicholson method is implicit. Gotlieb and Gustafson in their paper provide a 
thorough analysis of the Du Fort and Frankel method. 

Schmidt and Lax-Fredrichs’ methods are conditionally stable whereas Crank-
Nicholson and Du Fort and Frankel are unconditionally stable. 
In our paper we develop blended (hybrid) finite difference methods for finding the 
numerical solution of the Burgers’ equation 
 

)0()10( ≥×≤≤=+ txuuuxu xxt αβ                                                              (1.1.2) 
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resulting from the operator splitting. 
 
Overview of Operator Splitting   
 

The operator splitting technique for the linear parabolic equation is outlined, thus: 
 
                                                 (1.2.1) ( ) ( TtbxaLuut ≤≤×≤≤= 0,
                                (1.2.2) ()0,( 0 xuxu =
where and),( txuu = L  is a linear differential operator. 
 

Consider the Taylor’s expansion 
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In equation (1.2.3) 
t∂
∂  can be replaced by L  

that is  
)),((),( txuektxu kL=+          (1.2.4) 

The exact solution of the equation (1.2.1)-(1.2.2) at the grid point ( is 
 The approximate solution at this point is denoted by .  Equation (1.2.4) can 

be written as;  

), nktmhx ==
).,( txu nmU ,

nm
kL

nm UeU ,1, =+             (1.2.5)                               

In equations (1.4) and (1.2.5) is called the solution operator for equation (1.2.1) kLe L  
is replaced by finite difference approximation.  In equation (1.2.5) L  can be taken to be a 
sum of differential operators with respect to x .  If  
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The approximate solution can be obtained from equation (1.2.7) by first solving 
 and then using this solution it is found that  nm
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This continues until  is obtained which is actually the approximate solution of )1(
1, +nmU

equation (1.2.1) (see Istvan, 2003). 
 

For the Burgers equation  
xxxt uuuu αβ =+            (1.2.8) 

The number of operators are two; that is S=2 with  
 

xnmh UL δβ
,1 −=                         (1.2.9) 

and 
 2

2 2 xh
L δα=                                     (1.2.10) 

The discretizations of  and  can now be done using various ways. 1L 2L
Historical background of operator splitting techniques can now be provided. Koller 

and Krylov (2006) demonstrated and discussed time integration due to operator splitting 
for linear 1-D parabolic equations. Ames (1977) and Mitchell and Griffiths (1980) 
describes additive operator splitting for parabolic equations which are more than one 
dimensional and were developed by Yanenko and Marchuk. Yanenko splitting is called 
first order operator splitting. Another splitting method mentioned by the same Mitchell 
and Griffiths (1980) which is called second order was developed by Strang in the 1960s. 
Istvan gives an elaborate discussion of operator splitting for parabolic eaquations. Le 
Veque and Oliger (1983) describes additive operator splitting for hyperbolic partial 
differential equations. Splitting method has been used by Hvistendahl (1997) and Evje et 
al., (1998) to find the numerical solution of convection–diffusion equation. 

In the study, a hybrid finite difference schemes based on Yanenko and Marchuk ideas 
to solve the nonlinear Burgers’ equation was developed. Solution of the heat equation 
were found and discussed. 

Below, hybrid finite difference schemes resulting from first order operator splitting 
are developed.  
 
Hybrid Finite Difference Schemes from Operator Splitting 
 

The word hybrid means blended or “marrying” two or more ordinary finite 
difference methods. To begin with, it is necessary to develop the pure 
Crank-Nicholson scheme as follows: 
 
First order operator splitting 
 
 The first order operator splitting numerical solution is given by 
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( ) nm

tLtL
nm UeeU ,1,

21 ΔΔ
+ =                       (2.1.1)                                

where  and  are the operators stated above, then  equation (2.1.1) 1L 2L
nmnm UtLtLU ,211, )1)(1( Δ+Δ+≈+                    (2.1.2)                               

   tkULLkkLkL nm Δ=+++= ,)1( ,21
2

21
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2

,2,1, +++=                    (2.1.3)                               
              

Pure Crank–Nicholson Scheme 
From the Burgers’ equation (1.1.2), it follows that,   
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  Equations (2.2.1) and (2.2.2) can be used in equation (2.1.3) to obtain the pure 
Crank-Nicholson scheme. 
 
Hybrid Crank–Nicholson –Lax-Friedrichs’ Scheme 

To obtain the scheme, the term  can be replaced by nmU , )( ,1,12
1

nmnm UU +− + in equation 
(2.1.3) and used equations (2.2.1) and (2.2.2). 
 
Hybrid Crank–Nicholson–Du Fort and Frankel Scheme 

To obtain the scheme, the term  is replaced by nmU , )( 1,1,2
1

+− + nmnm UU   in the equation 
(2.2.2),   by nmU , 1,2

1
−nmU  and by 1, +nmU 1,2

1
+nmU  in equation (2.1.3). 

 
Hybrid Crank–Nicholson–Lax-Friedrich–Du Fort and Frankel Scheme  

To obtain the scheme, the term  is replaced by 1, −nmU )( 1,11,12
1

++−− + nmnm UU . 
 
Approximation at the boundaries 

The composite operator  results in  and as some of its values. 
They are actually values along the left and right boundaries respectively. To approximate 
them Von Neumann boundary conditions are used. 

nmULL ,21 ,.2−mU ,.2+mU

Wood (2006), gives the exact solution of Burgers’ equation (1.1) as  
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0)0,1(),0( == utu ,                                                                                     (2.6.3)                                         
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At the left boundary (that is at 0=x ) we have  
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At the right boundary (that is at 1=x ),  
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In equations (2.6.6) and (2.6.7), 1, += nnω  
 
Results of the numerical schemes 
 
Display of the results 
 
Solutions of the methods developed for 0001.0,2 == αd and .1=β are generated.          
 
 The following notations are used throughout the presentations;  
CN means pure Crank-Nicholson’s method, 
CN–LF means Crank-Nicholson- Lax-Friedrich’s method, 
CN–DF means Crank-Nicholson-Du Fort–Frankel’s method and 
CN–LF–DF means Crank-Nicholson- Lax–Friedrich–Du Fort–Frankel’s method, 
3–D means three dimensional, 
OPS means operator splitting. 
 
 The following figures give the 2–D or 3–D solution of the Burgers’ equation using 
the various methods discussed above. In all cases, the figures are self explanatory. 
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Figure 1:Solutions of the Burgers  Equation from 
first order operator splitting methods at t=0.005

exact
CN
CN-DF
CN-LF
CN-LF-DF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

x 10-4

distance x

he
ig

ht
 u

(x
,t)

Figure 2: Second order operator splitting solutions of the 
Burgers equation from different methods at t=0.005         
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       Figure 3: Fourth order operator splitting solutions of the 
Burgers equation from different Methods at t=0.005                
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Figure 4: CN 3-D solution for Burgers equation from first order operator splitting

time  t

he
ig

ht
  u

(x
,t)

 

0

5

10

15

0

5

10

15
0

1

2

3

4

x 10-4

distance  x

Figure 5: CN-LF  3-D solution for Burgers equation from first order operator splitting
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Figure 6 :CN-DF  3-D solution for Burgers equation from first order operator splitting
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Figure 8:CN-LF  3-Dsolution for Burgers equation from second order operator splitting
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Figure 7:CN  3-D solution for Burgers equation from second  order operator splitting
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Figure 9:CN-DF  3-D solution for Burgers equation from second order operator splitting
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Figure 10 :CN-LF-DF 3-D  solution for Burgers equation from second order operator splitting
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Figure 11:CN  3-D solution for Burgers equation from fourth order operator splitting
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Figure 12 :CN-LF 3-D solution for Burgers equation from fourth order operator splitting
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Figure 13 :CN-DF 3-D solution for Burgers equation from fourth order operator splitting
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Figure 14: CN-LF-DF  3-D solution for Burgers equation from ordinary methods
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It is noted that the 3-D solutions that do not involve the Du Fort and Frankel method 
are smooth wheres those that involve it are grooved. 
 
Results and Discussion 
 

Results indicate that the Lax–Friedrichs’  reduces the efficacy of the Crank-Nicholson 
method, the Du–Fort and Frankel differencing improves the efficacy of the Crank–
Nicholson and the hybrid Crank–Nicholson-Lax–Friedrichs methods. The increase of 
grid points involved is responsible for the improved accuracy of the Crank–Nicholson 
method and the hybrid Crank–Nicholson–Lax–Friedrichs. The Du Fort and Frankel 
method increases the number of grid points involved by one. The hybrid Crank–
Nicholson-Lax–Friedrich–Du Fort and Frankel method of the fourth order operator 
splitting is the most accurate and  the grooves in the 3–D solution indicates that the 
accuracy is improved or decreased from one time value to the next.  
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